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S•1. Introduction

This final report covers 1 year of ARO-sponsored research into the
fundamental behavior of rotor dynamics. The original proposal was for 3
years, but the first two years were done under a separate grant. Thus, this

. report covers only a portion of the originally-proposed work. In this final
report, we will summarize the work done, including publications and
scientific personnel; and we will provide pertinent technical descriptions of

'each major area we have pursued.

The philosophy of our research has been to increase the fundamental

understanding of those dynamic and aerodynamic phenomena associated with the
helicopter. Our approach has been to follow three intertwining lines of
research. The first of these is the line of mathematical modeling. Here, we
wish both to synthesize and refine mathematical models for various, isolated

." rotorcraft phenomena, and to learn to couple them together in a systematic
". way. This is the building-block approach we have followed. The second line

of inquiry has been in the development of solution methodologies for these
equations. Here, certain solution strategies work better for certain models;
and some modeling techniques require new solution strategies. We look
specifically at methods that magnify our insight, are computationally
efficient, and that can be extended to large-scale systems.

This leads, then, to the third thread of research: basic physical
insight. Of course, because we deal with isolated components or withV simplified couplings, we do not intend to be able to make predictions on
helicopter stability and response that would be applicable to detailed design
studies. On the other hand, we do expect our methods to be predictive of the
behavior of simplified research models, such as those used by the Army
Research and Technology Laboratories. Furthermore, we believe our results
give qualitative insight into the physical phenomena present in production
rotors. Thus, we try to involve all three elements in our research effort.

2. Statement of Problem

The objectives and scope of this work are as follows:

1) To discover the basic relationships between blade structural
parameters and the flap-lag-torsion airloads that result.

2) To determine the extent to which rotor-body coupling affects
inplane loads and overall helicopter vibrations.

3) To develop our basic trim procedures to the point at which they can
be applied to large, state-of-the-art rotor response program.

4) To determine the effect of dynamic stall on the rotor airloads and
on the basic trimming methods.

( 5) To investigate other methods of obtaining time histories of rotor
response, including Hamilton's Law of Varying Action.,

-w . -w A '- : -. .-."'.--:-.-K% . :K (' ; . z.. -.'-.. -- -' K &., 2' <-.- - "-.- -'"' .-..- -''' ' . r. ..- ','.
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Before proceeding to the details of each objective, it is informative to
outline the scope in each task. With the exception of item 3, the above
objectives are not aimed at the quantitative prediction of helicopter
response. They are aimed at obtaining fundamental insight into how rotor
vibrations develop and into how they can be efficiently calculated. Thus, in

Ile. item 1 we consider a simple elastic-blade model with elastic flap, lag, and
torsion. Although other, more sophisticated flap-lag-torsion models
certainly exist, they have not been obtained under the same assumptions nor
with the same purpose in mind as ours. Thus, we have proceeded slowly and
carefully to make sure we understand the physical processes at each step.

In item 2, we are looking at a fuselage with 5 rigid body modes and 4
elastic modes (as in our prior work) but with a more detailed rotor model.
Naturally, a true fuselage will have many more elastic modes; but we look at
a generic frequency sweep that could be representative of several potential
modes. Since we have already found that flapping motions drive inplane
motions (while inplane effects flapping much less) we make several
simplifying assumptions to increase the productivity (and physical
interpretations) of the work.

Item 3 is the only area in which we approach the area of applications.
These trim procedures are now fairly well understood in terms of theory, and
the advancements now come through more sophisticated applications.
Therefore, we have reformulated the trim procedures.

Item 4 is a new area of research that developed out of our dynamic-stall
5 work. It is not in our scope to develop any dramatically new dynamic stall

procedures. We merely take existing methodologies, investigate how they
should be modified to be useful for simplified vibration analyses, and study
the resultant effects on the types of calculations we are making.

Item 5 is also a new area of research which developed out of our prior
trim investigations. For nearly linear systems, the trim method of periodic
shooting is equivalent to finding and inverting the Floquet transition
matrix. (An earlier solution method in our research also relied on Floquet
theory for vibration analysis.) Thus, it is natural to look for more
efficient means of finding the transition matrix. One possibility is the use
of Hamilton's Law of Varying Action with comparison functions in time. In
this research we study Hamilton's Law in detail with respect to convergence

* and efficiency.
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5. Summary of Results

In this section, we summarize the results of our research for this
one-year effort. However, (the first two years were performed at Washington
University in St. Louis), we will also refer to how this third year completes
the work begun in the first two years. Reference numbers refer to
publication in Section 4.

5.1 Finite Elements in Time

Recently, much attention has been give to numerical application of
Hamilton's Law of varying action. Hamilton's Law is a variational statement

- about "action" which provides, for the time domain, what variation of work
- provides in the space domain. Thus, these applications of Hamilton's Law

result in finite elements over the time domain; and these can be either
p-version, h-version, or a combination of the two (depending on the choice of
test functions). However, numerical applications of Hamilton's Law have
sometime resulted in solutions that do not converge as the number of elements
(i.e., polynomials) is increased. In this research, a convergence proof was
found, based on the bilinear formulation, which demonstrates that some

C! formulations are not truly bilinear and may not converge. The proof also
leads to an alternate, bilinear formulation of Hamilton's Law for which

- convergence is assured. The bilinear formulation also leads to an
.. alternative statement about dynamics. In particular, the "virtual action"

plus the variation of action over a space-domain must always sum to zero.

Numerical application of the correct bilinear formulation leads to
Lagrange multiplier with the physical connotation of an end momentum (which
is the analogy of end force in spatial problems). Thus, initial velocity is

- treated as a "natural" rather than as "geometric" boundary condition; and the
* Lagrange multiplier converges to the unknown momentum (i.e., velocity) at the

end of the time period. Thus, the bilinear formulation is a "mixed method".
Accuracies of solutions with the Lagrange multiplier are an order of
magnitude better than those which use the derivative of shape functions for
velocity.

* I In the limit as one takes many elements with only a few polynomials
each, this formulation reduces to a classical time-marching method, (an
h-version finite element) similar to Euler, Runge-Kutta, or predictor
correctors. In the limit as many polynomials are used per element, but with

- only a few elements, the method becomes similar to a Ritz-Galerkin procedure
in time ( a p-version finite element). Results show that, for any given
problem (as characterized by the computational cost of a function
evaluation), there is an optimum choice of polynomial number in order to meet
any error criterion with minimum computational effort. Similarly, depending
on the problem, a particular choice of polynomial number may or may not be
more efficient than conventional time-marching methods. In general, finite
elements in time become more efficient than marching as the desired accuracy
becomes exacting and as function evaluations become computationally
expensive.

L
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The details of this work can be found in References 5 and 7. Figures
1-5, taken from Reference 5, summarize the major conclusions of the work.
Figure 1 shows the blade flapping angle, 0, at the end of one rotor
revolution as calculated both by Hamilton's Finite Elements and by our new,
bilinear formulation. One can see that, for Hamilton's Law, p fails to
converge uniformly as the number of basis functions is increased. Figure 2• further shows that this divergence is not restricted to a certain advanceZ4 ratio. Results with Hamilton's Law can be in error over 100% even with 12
basis functions at p = 0.5. The new formulation, on the other hand,
converges in all cases.

Figure 3 provides hp-optimization information. The figure gives log 10
of the error as a function of the number of floating-point multiplication
required in the computation, M. The straight-lines are for various number of
polynomials per element, n, with the step size being a running parameter
along the lines. One can see that, for any given error tolerance, there is a
minimum M given by the interior of optimum curve formed by the locus of
straight lines. The x's are results from Hammings predictor-corrector. For
this case (C=16 implies 3 to 4 sine or cosine functions in each coefficient),
the hp finite elements are always superior to conventional time marching.

Another interesting result of our research can be seen in plots, like
Figure 4, which show error on the interior of a large, p-version element.
The error norm is zero at t=O (due to known initial values). It goes through

- some erratic oscillations (due to truncation errors near x=O), but settles
down over the rest of the element. The minimum error, however, is found at
t=T, the end of the period. The values at the end of the period are exactly
what is needed for Floquet theory. Thus, finite elements in time (when
correctly formulated) are ideal for Floquet applications.

% .Finally, we consider numerical stability when finite elements are used
to march indefinitely, Figure 5. The values p and a are the system frequency
and damping multiplied by the element length, At. The exterior of the large
semi-circles (as well as the interior of the small semi-circles on the p

.' axis) are conditions of numerical instability. "n" is the number of
polynomials per element. To put this in perspective, typical radii of

. convergence for other methods are near 2 = 1.4, smaller than even the n=2
result. At n = 6, a step size equal to two periods (r=3n) is required before
instability occurs. From Figure 3, however, we see that such a large step
size would result in very large errors with or without the instability. No
optimal point on Figure 3 is unstable.

5.2 Dynamic Stall

A major portion of our research has dealt with the introduction of a
modified ONERA model (for dynamic stall) into rotor elastic-blade analysis.
In this research, reported in References 4 and 6, flap and inplane bending
are described by two nonlinear, partial-differential equations which are
coupled together as derived in Reference 1. Each equation consists of lower
and higher order terms. Approximate solution methods are applied to these
aeroelastic equations. The aerodynamic circulations are expressed by our
unified theory. Only lower order terms of the equations in Ref. 1 are
considered in the analyses. This allows the investigation of the general

trends of the result without going into cumbersome computation with little

. . .
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improvement. In the following, we write the system of equations to be solved
including lower-order terms only

Flap equation, order e

i-( )+7+ +++ A = W.* +F,)( +, sin ) (1)

Lag equation, order £2

+Av "+ +  +(A 5 -A 6)(0+46) + + + + - 2  ; T + -
" "0

I -A + Fr)(w+)u cos f + + V) - -CD(.: +,u sin If
*6a 6u

.,. (2)

I, equation. order I

k F + z,= aU. + 6be+

(3)

;, F, equation. order I

P. F n. order k-r,+ 2dwkr, + -wi"I +d d), =-w2 +d')[U,AC. +ek(U.'AC.+

(4)

* It is interesting here to note that the terms of the lag equation are of
higher order compared to the terms of the flap equation. Thus, to first
order, flap drives lag in an important way, but lag has a lesser effect on
flap.

'" "" An effective way of obtaining accurate pitch inputs is based on the use
of an automatic feed-back system that can trim the helicopter. The

* -auto-pilot equations are developed and expressed as follows:

r4
i - 7
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rOO+0 O[,4 p2(1

T10' + 00 Al (6 1 Cos 1P - y- 1 sin OD3 (6)
. . . ..8(P. - 1)

" ~r16, + Oc=-A, ° 1 sin 0 + Cos 0]D

(7)

This automatic-feed-back system provides control to the helicopter for .
numerical purposes. It adjusts the pitch of the blade to maintain thrust(

' '

roll moment, and pitch moment. The parameters A and A are controller

gains. The parameters T0 and T are time constants. The grouping 8 (P2 -1)
0 1 Y

is a coupling parameter giving the pitch-roll coupling of 0 and 0c* The
2

grouping 4 is an estimate of rotor thrust in the absence of an explicit3y

CT equation.

A. In the computational algorithm, input parameters define the basic
aircraft configuration and flight conditions. The blade type is defined by
its root stiffness, solidity, Lock number, damping, and airfoil type. Flight
conditions, on the other hand, are characterized by the advance ratio, and
thrust coefficient. In Table 1, we present the common parameters used in the
cases discussed in this report. These parameters are selected from current
helicopter data and used for illustration purposes. It is noted that we use
only a constant value of C In future work, we intend to include a variable
CD based on stall assumptions. Thus, the major study here is the effect of

stall on lift but not on drag.

Vibration analysis includes flap and lag responses and their sensitivity
to advance ratio and thrust coefficient. The torsion effect is neglected in
this study. The variation of the automatic control settings required for
trim is determined for a blade revolution in a steady state. In addition,
the change of these settings as a response to blade stall is identified.
Last, the vibration in the flap direction obtained from the stall model used
in this research work is compared to results obtained when a linear
aerodynamic model is used.
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Table I Baseline Parameters

Parameter Numerical Value Physical Description

. 6.63 Lock number

"-" a 6.461 lift curve slope

CD .01 drag coefficient

,

.. 1

V", A, .002 Em -mnQ2R4

b .05 R

* P 1.03 flap frequency

f .01 profile drag coefficient

a I solidity

K.0203 stiffness of flap root

I K. .02083 stiffness of la- root

C. 025 damping coefficent

ro 6.6 time constant

r1, r, 1.884 time constants

A0  2.6 gain

A , A, 3.6 gains

I.
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In order to determine the response of a helicopter blade, one must
determine the pilot controls (collective pitch, cyclic pitch, and shaft tilt)
that are applied to the rotor. There are two primary methods of doing this.
One method is based on formulas derived by a harmonic balance of the
equations without stall. In the other method, an automatic pilot is
implemented to update the controls, equations (5-7). In either case, the
purpose of the controller is to eliminate first harmonic moments (in the
rotating frame) which come through (to the fixed frame) as steady pitching
and rolling moments. In other words, "trim" implies (among other things) the
balancing of these moments.

Figures 6-9 provide plots of the flapping response at x = 0.7. Because
this is a rigid blade with root spring, flap displacement, w, is a direct
measure of root moment. The four figures show a variety of thrust
coefficients and advance ratios, some with stall (high p, high C ) and
others with little or no stall (low p., low C ). We see immediatily that the
approximate formulas for trim give a large aount of 1/rev (i.e., sin ) in
the response. Thus, they are not accurate due to the aspects of the model
neglected in such formulas (inplane motion, unsteady aerodynamics, nonuniform
inflow distribution, and stall). The results with the automatic pilot,

* however, show two peaks per cycle, indicative of little 1/rev, mostly 2/rev,
and some 3/rev, which is indicative of trim.

It is interesting that most investigations in this area have had trouble
obtaining a correct trim. For example, Figure 10 shows results at j 0.4
from Friedmann. Two different iteration schemes are used for the two plots.
Notice, however, that the results (although labelled as "propulsive trim")
have a large 1/rev component very similar to that seen in our
approximate-formula results of Figure 6. This is to be expected because only
an approximate formula is used. Figure 11 presents other results from
Chopra. Here, we see a very large fore-to-aft 1/rev for a rotor supposedly
in "propulsive trim" at C = 0.1, p = 0.2. Furthermore, the curves show that
the response is not even eriodic, as the slopes do not match at * = 00 and
3600. In Figure 12 taken from a later Chopra reference, the authors attempt
to correct the lack of trim found in Figure 11. The dashed curve is the old
result (although in this paper it is corrected to be periodic), and the solid
curve is the new result. In this new result, the trim solution is modified
to include elastic twist. Notice, however, that although the 1/rev has been
reduced by about 50%, it is still very much present. Furthermore, the solid
curve is not all periodic, with an error of over 100% in the slope between

00 and $ 3600. This points out the difficulties in finding a good trim
solution with elastic-blade equations. The autopilot aids greatly in this

'. regard.

In summary, unified-aerodynamic model has been introduced in the
elastic-blade equations. This model is an extension of the ONERA lift model
and includes plunge, unsteady free stream, and large angles of attack. An
ordering scheme has been used to segregate the important terms from others.
The elastic-blade equations are presented as lower-order terms and
higher-order terms in the flap, lag, and circulation equations. A solution
method based on a modified Galerkin's method is used to separate the time and

space variables in the differential equations. A numerical solution is
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obtained by solving the equations for time history. Two methods have been

used for trimming purposes. Dynamic response has been conducted for a
variety of thrust coefficients and advance ratios. Results lead to the
following conclusions:

1) The approximate method, in which pitch settings are approximated,
gives large once-per-rev oscillations in the flap response.

2) Automatic controllers eliminate the once-per-rev and are used
successfully beyond stall limit.

"- 5.3 Tip-Loss Aerodynamics

In this area, we have made two very important contributions to the
"' understanding of tip loss. First, we have developed methods to optimize the

lifting-surface mesh. This optimization not only improves accuracy but also
guarantees convergence, something that cannot be said of conventional mesh
choices. Second, we have developed closed-form estimates of the far-wake
contributions to induced velocity even with wake contraction. This improves
convergence on velocity computations by a factor of 10. These two methods
together from the nucleus of our tip-loss computer code which is now being

'utilized. Because neither of these developments has yet been published
(although papers are now in review), we attach to this report an extended
abstract which outlines the developments in mesh choice; and, under separate
cover, we have sent to ARO a manuscript on the far-wake methodology, which
has been submitted to the Journal of Aircraft.

5.4 Rotor-Body Coupling

Our research in rotor-body coupling has been severely hampered by a
tragic accident involving Huang Ming-Sheng, the graduate research assistant
involved in this work. Reference 8, attached to this report summarizes the
basic theory behind the work, which was developed by Mr. Huang prior to his

haccident. Since recovering from these injuries, he has undertaken the task
of coding this theory. That work is now completed. Due to the loss of time,
we are not now able to deliver extensive numerical calculations as we had
hoped. We will, however, continue this research (hopefully under future ARO
funding).

5.5 Dynamic Inflow

We have made considerable progress in this grant toward achieving more
widespread use of the theory of dynamic inflow. Reference 2 provides the
ultimate correlation between our ARO-sponsored inflow model and wind-tunnel
test data in the Ames 7x10 wind tunnel. Reference 3 gives a review of the
past 30 years of dynamic inflow modeling including the present state of the
art and current research interests. Current research interests which we have
pursued in this grant are: 1) role of tip-path dynamics on actuator-disk
assumptions, 2) effect of hub motions on dynamic inflow and 3) relationships
between higher-harmonic dynamic inflow and unsteady aerodynamics. In the
first item, we now believe that tip-path dynamics should not alter the
momentum statement of dynamic-inflow theory. In the second area, hub motions
can effect the formulation of linearized dynamic inflow. We have worked out

'%U



the details in Ref. 3. In item 3, we have uncovered some very strong
relationships between Loewy theory and dynamic-inflow theory. Those may
allow us to develop a 3-dimensional, unified theory of unsteady aerodynamics
that is applicable to rotary-wing problems. An extended abstract concerning
this new theory has been submitted to the AHS Forum and has been sent to ARO
under separate cover.

5.6 Multiblade Transform

One of the smaller tasks in our research effort has been the study of a
modified multiblade transform designed to put the differential mode into the

nonrotating system. This work is essentially complete, although the student
involved has not yet finished writing his M.S. thesis. The major conclusions
are as follows:

' 1) The new transform for 2-bladed rotors does provide improvement over

the conventional 2-bladed transform. In particular, it captures the
essentials of the 1/rev instability at high p.

2) For rotors with an even number of blades greater than 2(e.g.,
4,6,8,etc.), there are two possible alternate transforms. One provides some
improvement in the transient analysis but degrades accuracy of the forced
response. The other improves forced response but degrades transients.

, Therefore, it is doubtful that either transform will be of general use in
dynamics analyses.

3) As a spin-off of the study, we have developed matrix-manipulation
algorithms that can perform the multi-blade transformation (either
conventionally or in one of our new ways). These algorithms offer a simple
way to make this important change of variable, and they are superior to
computer algebra, numerical analysis, or fourth-order tensor approaches used
by other investigators.

6. Summary of Results

In summary, we can say that our research has been very successful. It
has resulted in improved analysis tools and in improved understanding of
rotor vibrations. Many of these tools have been (and are being) integrated
into production rotor codes.

' %

- -a .~~~~€ , , a * .. .

. . . . . . aa
.. D - p-...



i..,..

.,

Optimum Choice of Panel Size and Collocation

Points for Rapid Convergence of Lifting-Line

* and Lifting-Surface Theories as Applied to

Both Fixed and Rotating Aerodynamics Surfaces

by

Yihwan Danny, Chiu

Research Assistant

and

-'5 David A. Peters

Professor

School of Aerospace Engineering

Georgia Institute of Technology -'-o

Atlanta, Georgia

-'4 An Abstract Submitted to the Aerodynamics Committe of the American Helicopter Society

For Presentation at the 1986 Annual National Forum.

Oct. 15, 1985

.4:

-a.

U-*g



:,. :

ABSTRACT

Researchers often use lifting-line and lifting-surface (or panel) theories to obtain

lift and drag of fixed and rotating wings. The choice of panels. line segments, and control

points within panels (i.e., collation points) is usually performed on an ad hoc basis based on

S°engineering judgement. The results of this research show that often-used methods such as: 1)

placing control points at mid-span of the panel, 2) placing large panels near the blade root

and small panels near the wing tip. and 3) using equally-spaced panels near the blade tip, all

result in order-unity errors in the calculation, and these errors do not decrease with refined

mesh even as the number of panels and the number of significant digits is increased without

bound. They are non-vanishing residuals.

V The work reported here describes both how to eliminate these residual errors

Sthrough proper choice of panel size and control points, and how to optimize the mesh size

to give the maximum rate of convergence as the number of panels is increased. Comparisons

with experimental data, with other lifting-line and lifting-surface results, and with a

classical Fourier solution, demonstrate the superiority of the new procedure over

conventional mesh-choice methods.
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INTROLUCTION

It is commonly agreeed that the key to accurate calculation of the rotor aerodynamic

behavior is the correct modeling of the rotor wake. McCroskey' concluded that lifting-line

calculations (for rotary-wings) are in error, regardless of the wake model. The

prescribed-wake method of calculation also gives errors in spanwise loading distribution,

* regardless of which representation is used for the surface of the blade. Even with the

complicated free-wake models, lifting-surface codes still fail to predict adequately some

cases with highly nonlinear twist distribution. It has been proposed that a major part of

these observed discrepancies is due to improper selection of collocation points, (i.e., the

SiA, possibility of running into mathematical singularities that have no physical counterpart2).

"-~ Most present-day rotor analyses employ a Kernel-function (in the Mangler sense),

which contains a higher-order singularity and is diffcult to handle. Some researchers.

however, employ the Vortex Lattice Method (VLM) which amounts to a Cauchy-type

finite-element solution to both lifting-surface and lifting-line problems. Many applications

of the VLM have been made to problems of the aerodynamic analysis and design of wings

with considerable sucess.3"  However, the prediction of the detailed aerodynamic

performance of a rotary wing is more difficult than that of a fixed wing. In the latter, the

wake trails back from the wing in a relatively straight path to downstream infinity. The
" effect of the trailing vortex on the calculation can be minimized by use of certain

mathematical techniques or by use of a free-wake model, which automatically allows wake

roll-up. In the case of a rotary wing. the blades pass directly over their own wakes as well

as those of other blades as they rotate. Furthermore, a given element has a longer residence

time in the immediate vicinity of the rotor plane compared with that of a fixed-wing vortex

element. Many computational efforts has been performed to reduce the error caused by

wake vortex elements of rotary wings. These include the numerical integration technique-

(for the prescribed-wake models), curved-vortex elements a (for free-wake models). and

division of the wake into three separate regions with each computed separately."
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The intention of this research is to discover if a simple, systematic, optimized VLM

approach can be developed for application to both fixed and rotary wings (especially for

helicopter blades), despite criticisms of the VLM, which continue. These criticisms contend

either that the lattics are laid out in a preconceived manner to give some desired answei or

that too many lattices are required for adequate convergence of the computed l5ading. The

present work is to derive systematically an optimized vortex-lattice layout which overcomes

these objections and which can be applied to a wide variety of configuration, including

rotary wings.

RECENT DEVELOPEMENTS AND SCOPE OF WORK

(A) 2-D thin airfoil theory:

In the conventional VLM. a thin airfoil is divided into a number of element panels,

N. and a horseshoe vortex is placed at the 1/4 quarter-chord of each panel. The control

point is located at the 3/4 quarter-chord of each panel. The results agree with Jame's 0

analysis that the first prediction-value (vortex strength) is consistently 11.4% too low for a

variety of cambers. Furthermore, increasing the number of elements does not help acurracy.
But C, (lift coeff.) and Cm (pitching moment coeff.) are always exact for N greater than 2.

L This is the reason that the majority of aerodynamists use conventional VLM. Lan 3 developed

the so-called "semi-circle rule" to select collocation points and obtain the essentially exact

C. Cm and vortex strenth. Kocurate" used a Doublet-Vortex method to find the local

circulation in this 2-D case and applied it to the lifting-surface performance analysis for

. hovering rotors. His panel spacing is biased by a cosine distribution, but control points are

located at the midpoint of each panel. The method does converge as N is increased, but the

rate of convergence is still too slow. Results in this paper show that the semi-circle rule can

be applied to both panel size and collocation points to obtain essentially exact values of C1,

Cm,. and vortex strength.

, -. (B) Lifting line theory:

Glauert' 2 solved Prandtl's lifting-line formula b% using a Fourier Series method.

Dejarnet" applied Multhopp's intcpolation technique to obtain the same result as Glauert.
S. :-

j4
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The conventional VLM divides the entire wing span into a number of panels. M. Also, the

trailing point is located at the boundary of each panel: and the the control point is placed at 01,A

- a the midpoint of each panel. The 1/4-3/4 rule is also used by Hough"4 to afford a

singnificant reduction in computational costs. Dejoung' 5 has proved that there is

mathematical convergence of the VLM to the exact answer, when the 1/4-3/4 rule is used

as M (or N. in 2-D case) approaches infinity. The crux of the matter lies in assessing how

fast the verified 1/4-3/4 rule improves the convergence and if it is an optimized-choice.

Actually, the 1/4-3/4 rule is a special case of the Finite-Difference method, for which

locations presumably can be chosen arbitrarily. In this paper, however, we show that if the

collocation points are laid out according to a special shape function, which has the same

shape as the desired unknow circulations, then the VLM generates the fastest convergence.

These shape functions must have quadradic behavior near the wing tip to match the

asymptotic tip behavior' 6. Both parabolic and semi-circle functions are valid for this

requirement at the tip. and these functions result in an unequally-spaced Finite-Difference

technique. Results from different shape functions, compared with the classic solution for a

elliptical wing, confirm the rapid convergence of the new method. A mathematical proof (of

the optimality of the correct shape function) will be included in the final paper.

"*, Basin 7 derived the mathematic equation of lifting-line theory for a rotary wing (in

the prescribed-wake sense). Rosen' extended it to curved blades. Both of these use 10
,.p.

equally-spaced meshes, but the results are not particularly accurate. Part of reason stems

from the fact that M is not large enough due to poor selection of collation points. By using

a semi-circle or quater-circle to select collation points, we can guarantee rapid convergence.

Also included in this paper is an extension of Multhopp's interpolation technique to

Prandtl's lifting formula for rotary-wing problems. This technique proves to be equivalent

in accuracy to use of the "Fourier Series" method. Although based on a 3-D, rigid-wake

concept, an example is given for lightly-loaded hovering blades, calculated by both

- Finite-Difference and Fourier Series techniques. These are compared with the experimental

data"s. and both give excellent correlation.

" -'
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(C) Lifting-surface theory:

The conventional VLM layout for lifting-surface theory is to use uniformly-spaced

panels for both chordwise and spanwise directions over the whole wing. The 1/4-3/4 rule is

also used by Hough' 4 for the spanwise direction and by Belotserkovskii' for the chordwise

direction. A reviews of these results3 " reveals that (M,N) should be at least (40,2) to give

good convergence for typical fixed wings. Dejarnette"3 also applied Multhopp's interpolation

"- technique to the lifting-surface formula with smaller computation time: but the method can

be used only for rectangular wings. Some criteria, developed from combination of

lifting-line and thin-airfoil theory, can be applied in order to select collocation points.

Results in this paper show that a mesh size of only (10,2) can give excellent convergence to

A exact values when one uses the semi-circle rule to select panels. For rotary wings, Rosen 9

and Chang2 use only (10,1) equally-spaced panels to calculate aerodynamics, and the results

seem to be doubtful. Proper selection, made by the semi-circle or quarter-circle rule, should

improve the convergence. These criteria are valid not only for VLM but also for the Double

Lattice method, which is an extention of VLM. -' For example, in the case of the propeller

analysis by Murray2 2 , an increzse in outboard unequally-spaced panels actually appears to

have a detrimental effect on convergence. Thus, meshes cannot be selected or refined

arbitrarily. Finally, one can reformulate the problem to solve for induced drag and pitching

moment as well as for lift.

CONCLUDING REMARKS

We have reviewed the conventional VLM literature with respect to selection of

collocation points and the corresponding results. These generally show a low rate of

convergence. A new criteria for choice of these points is derived from lifting-line theory. A

mathematical proof is provided to show that this is the optimum choice. In summary, the

optimum choice of collocation points can be done as follows:

1

-.- , 1. The choice of points in finite-difference lift calculations should be made on the

a ,e
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basis of equal vortex strength between points, not on equal spacing. Ideally, this would

require an adaptive mesh which could change at each iteration; but practical results show

this is not necessary, and a quasi-optimum mesh can be used.

2. The size of each panel must smoothly transition from large increments to small

increments, moving along the direction in which the rapid change of vortex stregth occurs,

and following a smooth shape function. This function must be quadratic near the tip.

" "" 3. One way to choose the points in a quasi-optimum manner is to map the spanwise

and chordwise interval according to a function which has the approximate properities of

criterion 1 and 2, such as a semi-circle. Both panel boundaries and collocation points must

" "4-" be chosen in a smooth manner according to this function.

4. A easy way to map the interval for rotary-wings in subsonic flow is to use the

"Semi-circle rule". An advantage of this mapping is that integrals over the vortex strength,

can often be reduced to closed form. Sevsral semi-circles can be used if several

discontinuities occur.
L_

Multhopp's interpolation technique is also specified as a semi-circle rule for

unequally-spaced Finite Differences, which yields the same error as the Fourier Series

method and can be applied for rotary wings. The results for wing problems by the Finite

Difference technique (unequally-spaced mesh) are found to compare well with experimental

data, but with smaller computational times, improved accuracy, and simplfied mathematical

derivation, as compared with other continuous loading methods.

5,-
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COMPARISON OF 2-D THIN AIRFOIL

VORTEX DISTRIBUTION WITH

STRAIGHT-LINE CAMBER

1 =W~z)1 fo1 i~l'
1 W~x1

27r - ..1

ERROR PERCENTAGE %
Nth POINT V.L.M. CURRENT

1. 11.363 0.0
2. 0.897 0.0_________

3._____ 0.274 000

4. 0.112 000
5. 0.039 000

p 6. 0.013 0.0001______

7. 0.070 0.0006
8. 0.174 0.0001
9. 0.466 0.0005

10. 2.3 14 0.0034
Cl 0.0 0.0

Cm 0.0 0.0

(10 meshes and codes)o

II .i

4. *NVORTEXN*~ DISTRIBUTION WIH.
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COMPARISON OF 2-D THIN AIRFOIL

VORTEX DISTRIBUTION WITH

PARABOLIC CAMBER

:: :: fo 1 y(xl)dxl
0.5(x - 0.5)= W(x)--

ERROR PERCENTAGE %
Nth POINT V.L.M. CURRENT

1. 11.363 0.0028
2. 0.897 0.0003
3. 0.274 0.0002
4. 0.112 0.0003
5. 0.039 0.0001
6. 0.013 0.0001
7. 0.070 0.0004
8. 0.174 0.0001
9. 0.466 0.0008

10. 2.314 0.0020
Cl 0.0 0.0
Cm 0.0 0.0

* (10 meshes and codes)' ,
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COMPARISON OF PREDICTED VORTEX

DISTRIBUTIONS FOR AN AIRFOIL WITH
V4

30% F-LAP CHORD AND 30! FLAP DEFLECTION

ERRORPER.CENTAGE

NO. POINT V.L.M. CURRENT
1. 15.92 0.25
2. 6.25 0.29
3. 6.10 0.37
4. 6.80 0.800
5. 9.15 13.58

6. 18.24 7.38
7. 7.59 0.02

I. 8. 11.59 0.07
Cl 4.07 0.17
Cm 2.25 0.025

* (8(5;3- mehsan d coeles)
• - -rSS& 0 4 S7
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(1) FOURIER SERIES METHOD, REF 12 -
(2) MULTHOPP'S INTERPOLATION,

REF 13
(3) Panel spacing is biased by a parabolic

... ... ...... - distribution, but control points are located
FIG. ACCURACY OF CL FORF A R O Fat the midpoint of each panel. Also, wing

UNTWISTED ELLIPTIC WINGS(AR=20) tips are specified as boundary points.

LEGEND (4) Panel spacing is biased by a cosine
SLEGEND distribution, but control points are located. 0 -'(1) AND (2)

* t.=(3) at the midpoint of each panel. Also, wing
= (4)
= ) tips are specified as boundary points.
= (6) (5) Both control and trailing points are

'p=,(9) selected according to equally-spaced
(I0)

panels and wing tips are specified as
1- %6 boundary points.

"_ -e---. -__ (6) Panel spacing is biased by ae elliptic
" ------ - - distribution, but control points are located

. "at the midpoint of each panel. Also, wing
tips are specified as boundary points.
(7) Both control and trailing points are
selected according to the parabolic
function and wing tips are specified as
boundary points.

(8) Both control and trailing points are
,1 selected according to semi-circle rule and

wing tips are specified as boundary points.
S(9) Both control and trailing points are

. __selected according to equally-spaced
0.0 10.0 20.0 30.0 40.0 50,0 panels and wing tips are specified asN, NUMBER OF TERMS

trailing points.
(10) Both control and trailing points are
selected according to the parabolic

%function and wing tips are specified as

trailing points.
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COMPARISON OF VORTEX DISTRIBUTION

FOR A RECTANGULAR WING WITH

EXPERMENTAL TESTS (Cl per degree)

AR=1.13
METHOD TYPE ERROR %

MULTHOPP(20) " L-LINE 37.00
(10;1)" L-SURFACE 1.80

" (10;2) L-SURFACE << 0.10
-., - - FINITE(10;2)'* L-SURFACE 0.41

''

AR=2.13 -
METHOD TYPE ERROR %

MULTHOPP(20)" L-LINE 19.00
" (10;1)" L-SURFACE 3.90
" (10;2) L-SURFACE 2.30

FINITE(10;2) L-SURFACE 1.90

•:ref. 13
[ " *so: Current Methodl"

I."
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(per deg.)

J066 4.5__ _ __ _ __ _

.040

.04

* .82 10 20 30 40 50

Number of Spanwise Vortices, M/2

Effect of vortex-lattice arrangement for

rectangular planforms.

* .- AA: Aspect Ratio

Current Method, (M,N)=(1O.2)

:ref. 13. (M.N)=1O.2)
0:ref. 13. (M.N)=1Q.1)

three conventional VLM. ref. 4
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INTRODUCTION

1.1 BACKGROUD

Helicopter vibration reduction is important as well as useful. With less vi-

bration, a helicopter can survive much longer and can provide a comfortable en-

vironment for passengers. However, unlike conventional fixed-wing aircraft, the

*5 . helicopter suffers an intrinsic, severe vibration source in the main rotor, which con-

tains elastic blades and is connected flexibly to the fuselage by a hub-pylon system.

So, the problem is rather sophisticated. It is well known that the fuselage motions

due to rotor vibrations will cause the hub to move in all degrees of freedom. This

hub motion can cause the hub loads to be different from those calculated for a

fixed-hub condition. This alteration can often be an order-of-magnitude change.

Therefore, in studying the effect of hub motions on hub loads, we are actually

studying a feedback system.

1.2 PREVIOUS WORK

The concept of performing a coupled rotor/airframe vibration analysis by

impedance matching was pointed out in 1964, Reference 1, which indicates two

important facts. First, a coupled rotor/airframe analysis can be performed in a

- rigorous maner by separate calculation of rotor and fuselage impedances followed
by a matching of forces and displacements at the hub. Second, the rotor impedance

S..need only be calculated for a single blade and then appropriately transformed to
- apply to any number of blades.

In 1974, Staley and Sciarra'treated the vertical vibrations of a coupled rotor

and fuselage, including the effect of vertical hub motions. They used a lumped

mass for rotor impedance and showed that hub motions could create order-of-

magnitude changes in hub loads. In Reference 3, Hohenemser and Yin further

investigate the effects of rotor-body coupling. Their model for rotor impedance

0. is based on a rotor representation thL. includes two masses(each equal to one-

half of the total rotor mass) connected by a spring to represent the first flapping

.. i' l l;':g .ei'-. g .e'" -,.. '¢' ' e""- . .".". . .. '- . .. '..'..'2..' ' .. .: . .. . . ..
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frequency. Reference 3 presents some very interesting conclusions that pertain

to fuselage design. Particularly, it notes that under certain conditions it may be

, desirable to tune a fuselage frequency to the blade passage frequency in ordor to

eliminate hub loads. Also, it outlines a method of computing the complete rotor

impedance by finite elements and transfer matrices. Other work on the impor-

tance of hub impedance may be found in References 4-6.

Since rather crude models have bern used for hub impedance (rigid mass, no

aerodynamics, etc.), one might wonder why more sophisticated models were not

used. The answer is straightforward. These were only the initial investigations

S.- into this effect. Furthermore, although most analysts realized the importance of

detailed blade modeling for fixed hub loads (blade modes, unsteady aerodynam-

ics, periodic coefficients, etc.), it was not clear in the beginning which of these

effects would be important for finding the role of hub motion on loads. Because

"- of the high frequencies involed (4/rev, 8/rev), many felt that inertial terms would

dominate.

Reference 7 offers a sophisticated (but linear) rotor flapping model that allows

for a detailed investigation of both loads and impedance (even in the presence

of periodic coefficients). The method, generalized harmonic balance, involves a

computer-bassed manipulation of equations that allows many degrees of freedom,

many modes, and many harmonics. In Reference 8, Hsu and Peters apply this

method to a flexible rotor and then use impedance matching to include plunge,

pitch, and roll of the hub. This combined technique proves to be very efficient

on two counts. First, the calculation for only one blade can be used for n-blades

(as in Reference 1). Second, wholesale changes in fuselage properties can be made

without a requirement to recalculate rotor properties. It is interesting that other

investigators who began with a full-blown, coupled analysis later changed to the

impedance matching technique, Reference 9-10.

For inplane vibrations with a fixed hub, Reference 8 sets up the rotor equa-

L tions with rigid blades, and Reference 12 treats the same problem but with elastic
" blades.
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In Reference 13, a fuselage model with offsets and 9 degrees of freedom is

considered, coupled with a rigid inplane blade model. There is an important con-

clusion in reference 13 which will be very useful for further nonlinear analysis.

It is that the addition of inplane degrees of freedom does not significantly affect

the plunge vibrations for the cases considered, and these cases are for resonable

configurations.

1.3 SCOPE'OF WORK J
In order to predicate the helicopter coupled vibration much better, the rotor

with elastic blades should be considered. The scope of this research is to continue

the previous efforts in the study of inplane coupled rotor-body vibrations. To

do so, first, the dynamic partial differential equations of elastic blades including

hub motions should be derived. Second, hub loads equations should be derived.

Third, the fuselage equations are taken to be the same as those in Reference 13.

3 The major goal of this research is to investigate if higher frequencies of the elastic

blades will affect the coupled rotor-body vibrations.

F -

- .. °*. . - - .. ** *

* * .. ' * -. * . . . p ,* ........



L

2. ELASTIC BLADE EQUATIONS

The equations of mntion for a flexible hingeless rotor blade in forward flight,

as derived in Reference 12, are the starting point for this analysis. The present

analysis, however, expands the previous work in following way. The hub motions

* (including plunge, longitudinal and lateral displacements, pitch and roll angles,

and their first and second derivatives) are added to the equations.

2.1 COORDINATES AND THEIR TRASFORM.ATIONS

The coordinate systems used in the present analysis are shown in Figure 1.

The triplet X,Y,Z represents a fuselage fixed coordinate system; and the triplet

x,y,z represents a rotating coordinate system. Between the Z and z axes there is

a precone angle. The deflection components of the elastic axis of the deformed

blade (u, v, and w) are taken in the x,yz coordinate system. The final set of axes,

z', ',z' are taken along the deformed axes.

There are transformations among these coordinates. Figure 2 shows the pitch

angle a, and roll angle a.; and, Figure 3 indicates azimuth angle ¢ and precone

angle op.. With these angles, one can trasform any vector, say P, from the fixed

S coordinate X,Y,Z to the undeformed rotating coordinate x,yz. We have:

; F = [Tnl F( 1))"
" F, Fz .'

where,

[TR]=

/ (cog P,ccog ibsin ac sin a. (cog Opccog b sin acco a.\
Cos R+ Co s. + fl, si -0 co c.-++ + o+. C9., sin si a ,-

"+ sin ,pc sin of + sn 9pc sin aCOS SCc Cos a,

sin sin , sin cr. sin i sin a cos a.
(-sin cosac + cos coso. ), - cos0 bsin a .

- + cos osa rsinf, cosg sin t, sin a. sin c cos i sin a cos a.
- -sinpsin 0cos. ( +sinflpcsinV, sin . I

+ cos # sin a, + cos P,, cos ac sin o J + cos cos o, cos a,

(2)

.:: : .



The transformation from undeformed coordinates to deformed coordinates is given

"" F,# d F,

where,

[,:- .( 1V+ W + )

[Td Ow+- v+ 1 0(4)[ '.-W+ + 0V+  -0 - W+ +  I

S?With these transformations, we can transfer the vectors to any coordinates needed.

Other, kinematic contributions to 0 are treated as pitch-lag coupling.

2.2 HAMILTON'S LAW

': The next step in the derivation is to apply Hamilton's Law to obtain equations

of motion. The Hamilton's Law can be expressed as

t (6U -ST -6W) dt + qi = 0 (5)ft.T_. t

where, 6U and bT are the variations in strain energy and kinetic energy, and 6W is

the virtual work. 'qi' is the generalized coordinate. To apply equation (5), 6U, 6T

and bw must be formulated in terms of the generalized coordinates.

2.2.1 STRAIN ENERGY

The strain energy can be expressed as follows:

• ii .. V --- Ec ,dA dx (6)

then,

6U =10I E ,2 6, dA dz (7)

where,

" = + - - "1 cosO, - fos 0, - w"1q sin 0, + cost,]-
2 2)

-V

.. .-, .,..., .,. ... .. , ...,..-.; ,.. .; ., ,4,..,... . ... .. . .;..,,.. ......-. .. ...- ... . .... . -
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Therefore, bU can be fuether expressed as

LU =JR {VziIbu' + v'6v' + w/Lw'J + [M,, + Afq,ReOJ6V"

+[IM.SR -Afg']bW"J d.T10

where,

,2 2

M, = Elyfv"RO - w"] (2

M,= EI,iJ" + w"ReOJ 13

-~ Integration by parts of bU gives the following result:

6U=] (?u6u +F~v +Fw) dx +6(U) (4

where,

2,=[M,~ +AfyRO]" - (V.,v')' (6

Iu MIReG - Afy,]" (Vz~' (17

and the boundary condition is

b(U) =V.,bu~ + {VV' - [M, +MyiRO]'}6V~

+ [M,, + MyROIbv'1 + {V.,w - [Mf.R, 0 - Nfy, I b}6tj

+ [M,,R.O -
(18)w 1
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2.2.2. KINETIC ENERGY

The kinetic energy can be expressed as

T=j 1  pV 4d dz (19)

and the variation is /."J"
6T = pV1 d,7 df dz (20)

where the velocity vector is

= {i + zl sin + dcz cos0 - dc.yllpccog

+ aifp, sin 0 -flyi -cosO + sin 0 - 29p,}

+ c'i .zl cos' -cizi sin ik - Qzipc+ 2sn i

+ .xIRccs0-cTIfp i )+O +Y cos V}

+ 2{71 - d;.yl Cos€ + 0dcyl sin V) + Qyljpc - dsx I sin V,

U~dX +{:d:cos4+&;x1+ s7P - iPC nsi (21)

P and where,

x, = z +u - v'[71cosO - rsinO - w'fn sinO + rcosO]

yj = v +1 rcosO - fsinO (22)

z, = w + q sin 0 + f cos

After integration over the blade cross section, the variation of kinetic energy be-

comes:

6T =jR (ZUbu + Zbvt + 2 bw + 2 ,'6v' + 2Ztbw') dx (23)

where,

Z. =m [i - d.tb sin tt + 2fW + cosOt- sin it- Oodob sin Ot

+ 2f'c.fipcz cos Ot - 21dcflpcx sin Ot + fQ;.6b cos Sit

%

%'



"+ 02- db sinfat + d.2 + 2ddz cos ft sin It

- (ctij cos fit - Zfil, + 2c;. sin fit + 2,Cos 0it]

+ m(W + CSin 0)[-C;. Sin at - i d. coS Ot - 112gpc] (24)

2,= M[-; + 2cdci' sin Ot + 0flpcW - C6.apcx Cos ft + d.Oflpcz sin Qt

+ 4Stc, sin Ot + rcflpcx Cos 0t - X sin Qt - C cos Qt - 2d., cos Qt

+ d° _ Q sin Qt Cos Qt - dcalpiha. (cos2 ft - sin2 fit) - z sin fit cos Qt

',. + ffi, - ff,pc. sin fit - fldcgpcz Cos fit + Zcdo cos ft - 26c sin t]

+ Mn 2 (V + CcosO) - 2alre + 2mef(v' cos 0 + w'sin O)

+ m(w +e sin o)[-S. cos Ot + Sc sin ft] (25)

. = m [-iv + 2dc cos fit - 2dci sin fit - 20flpci + STx sin fiOt + 2d 8°Qx cos Qt

+ Scx cos (t - 2l, z sin Qt + Y d. + Xfpc Cosf t - $"c sin Qt

-2 - .alphac - l2 gpeX - 2f0lf6c sin Ot - 20flY3 , cos ft

+ m(v + ecos 0)[S. cos Ot - 211d sin Qt - ,5 sin ft - 2fl( Cosf t] (26)

Me, mCOS Of sin t k Cofltefl2X2N]i (27)

me s Off sin Qt - cosflt - 02 x - 20fl (28)

in which,

m=11 pdqidd (29)

me Cos J p(y, -v) dil (30)
w"~JJA ,..

me sin J= p(z, - w) d,7 d (31)

Integration by parts again gives

J ,R , b v' dx jR 2  6 (b )
/oj

R R

Z6v - " v dx (32)
0

and

e--

II.
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R R R 
1

2u,,w'd z ,,w1-wa w dz (33)

Finally, the variation of kinetic energy can be expressed asRo

6T = J [Zubu + (barZ. - 2,,)6v + (Zw - 2',)bw] dz + b(T) (34)

where the boundary condition is

6(T) = v, + ,,,6w (35)

2.2.3 VIRTUAL WORK

The final step necessary to compute the equations is the computation of virtual

work. The virtual work, 6W, is mainly due to the nonconservative external forces

which come from the theory of aerodynamics. The virtual work can be expressed as

jR
6W (Lbu + Lvv + L.6w) dz (36)

where L., L , L, are forces acting along x,yz directions.

2.2.4 GENERAL EQUATIONS

II The functional of Hamilton's Law has three variables u, v, and w. This will

lead to three Euler-Lagrange equations which are the required equations of mo-

tion. Later, u can be eliminated which will reduce the system of equations to only

two. The basic equations come from Equation (5). If we ignore the trailing terms

that are cancelled by

It= 0 
(37)

then we have

-t 2
W (S - T- 8W)dt =0 (38)

LTherefore,

6U 6T -6 W = 0 (39)

e eo:1.
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with trailing terms dropped. In the case considered, we have

Z.)-L.6w}d, +b(U) -b(T)

-D (40)

From the principles of variational calculus, the equations of motion and boundary

conditions can be obtained from Equation (40).

6U equations:

P. = (1

6V equations:

.'. 'v (2 -,, (L 42)".

6W equations:

L, -(43)

and boundary condition:

b(U) - b(T) =0 (44)

2.2.5 BASIC EQUATIONS

With the help of the ordering scheme in Reference 12, but keeping flapping

equations o(c), lead-lag equation o(12 ), and eliminating axial deflection from 6U

equation, we obtain flapping and lead-lag equations in nondimensional form as

follows:
Flapping equation:

" AsD++++ + (A 2- )REOi++++ -+w+ - rtD+ + T** - 2V"+ - o"z sin

-2a~zcog~ - or,"cogV + 2ar*.sinb 0+ 9**Rpcog l - F**,6psin ik - 2* + gp~

(45)

Lead-lag equation

A 2 + + + + + (A2 - A2)R.Obarw++++ - ++- T++- - 2 D+ t+ dz

+ a"f - p, sin - -iD sinb + c t sin cosO - 2a*D sin V) + 2Z*r; sin s'
+ ,1:,:" cn, og V + ,:1",t cog 1P - ,'2 t sin 1P cos , + 2a t " cos k - 27'*: cos

+ acl a(co 2 . - sin 2 V) - 29/pcD* + V* sin V) + f. cos b

(46)
. %.

if i
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2.3 AERODYNAMIC FORCES

In deriving the aerodynamic forces, the following assumptions are made

1. Linear, quasi-steady aerodynamics

2. Blade stall, compressibility and reversed flow are neglected.
3. Uniform induced flow a

Figure 4 shows the free airflow passing through the helicopter. And, Figure 5

shows the blade element geometry. The total velocity with respect to air mass in
forward flight will be

•T Uir 0 (47)

where,

, O.,, = Vo1 f- (V + ,)K (48)

and 17 is the velocity obtained in Equation (21). Using the transformation [TRI
and [Td] in Equations (2) and (4), We obtain the required velocity components in

deformed coordinate with dimensionless form as follows:

V7, -0t+s cos i - )+ p cos b - sin i - f* - barz - -

- tD cos 10 + atDt sin 0' + 10P -02#,Cs?

+ a .8c sin t - X" sin b - * cos 0 - 8A %

0-P1 Co + OO1 - O1D* + 0a'*. sin 0j

+. eV*2 cos V +-i 0 - Aac sin 1P + Aa. cos 0 (49)

9), c+po -+X* cos lb + to+ F * sin, - A.

+ Op sin , + 02 + 9*0 sin 0 + f*O cos i

-p , cos ,0 + uac - t" + a:2 sin if'

+ a * cos -X'R cos + 'pc inkb + " (50)

In the deformed coordinate, the dimensionless aerodynamic forces can be expressed
as

F:, 0 (51)

= (52)

F,. -~LY,'~.J(53)

V _
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Then, we can transfer the aerodynamic forces above to undeformed rotating co-

ordinates, which are

(via
4 . ,

• ', = I jl• ', (54)

C''
Then, the external aerodynamic forces are

a-Y
LF.. (15)
L 'z.= F (56)-"-.

2.4 FINAL EQUATIONS

Combining Equation (45), (46) and Equation (55), (56), we obtain the com-

plete flapping and lead-lag equations as follows:

FLAPPING EQUATION

A 2 + + + + + (A 2 ++ , -2.

to+ -A2)R,0++++ - 7+W
+ - r++ + e* - - siz n J

-"2a icos&-acr ?osb+2a*sintb+X*pccos -F'i pc-** "-'. + ,
"a..

J{- . + pB s i n b + p , a - s in + l:Y :2 S i n t + a c42 C o g S _ t + 1 i n c o s 0 + f"

%.a... 
.

-'Asin V) - A2 - ~IA sin bcos V) -pwD sin V) - tD+2cog 0 - pfipC2Cos tkb (57)

LEAD-LAG EQUATION

2 + (A2 - AI)ReOf++++ - r+V + - V++ - V

); 2 f+ ,f*+ d t+ f," - otc- ,6p sin 0 - a c .t? sin 0 .,-

+ct:* 2 .sinoso -2a,tvsin - F2Zoce sinVb +a tflp'Cos -

+ 01:*tcs -Cog 0 sin 0 cos + 2at"D cos 0 - 2Z00 cos

+ a:a(cos2 - sin2 #) - 2/pc"& + X* sin 0 + 1'* cos

.%
* v.. . ' :. '-.x-: > *' . . a Y a . % .' . a
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= j+ 2 2 o 2 ,p + A2 + 2p2 C 2 04 + p 2

+ t7V0 3+ Zo2+C: 2 .t2 Sin2 v,+ acc2 22cOS24'

v . ~- 0 + ep 2 Cos 0 sin p - b + OuIco s 4' + 2 Ab + i c os V

2tD+p2 pos4 - 2fv~pYc COSk4 + 2tb~tb*, s Opt

- W+ap2u Cos 4'i sink' - 29D+c,4ptCOS24' - 2tD+ Vp cos 4'

Aj ini sin 4'i cos bI + Bpu cecsin4 io

-v Pju9 sino4 + 0 a p.sin2 '+ap sn cs4

+ 02*s sin 4' - OA- - 0jpct xCos t + o/juC2 - ftwz

+ OZ.2 + ea:22 Sin4 + oac42 2 COS 4' + 2Ap,6)9 co O'l

- 2Auac + 2av* - 2Aa*2 sink4 - 2Aac*2 Cos 4' - 2AZ*

- 2pfpa cos 4' + 2tb*puflp cos 4' - 2c:pu sinO 4cos 4'

*- 2a~f,pcs4 ' - 2z,c os A' - 21b~jac + 2ocas. sin 4'

+2aa~pz Cos 4'i + 22 *pc - 2tt'a. sin 10 - 2tD 4 2 cos 4'

-22,D* + 2a~a42 2 sin4 ikcos 4' + 2Z* c:2 sin 4' + 2Za crt os4

-d [.t 2 + P~2 sin 2 + 2pt sin 4' + 21a*sin 24
a

+ 229*sin 0 + 2s?%in 0 cosV)+ 22? Cos 7P]} ()

THE BOUNDARY CONDITION

Vsis6uj+{Viv' -[M,s +My'RO]')bv1 + [M,, + MyROv'

+ V,'zw - IM.,R.e - M.yI]'1 6 w + [M,*ReG - Mi]6i'

me Cos [f sin (It -osO f 2 0fl

f- me sin Off Sin (2t- fc Ot -
2 Z - 20l]6wj

-o (51)

0 %9

--
% V
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It may be noted that for a rigid blade (for which w = ,qz and v = ~z, the flapping

Equation (57) and the lead-lag Equation (58) reduce to those of Reference 13 with

the exception of nonlinear higher-order terms.
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3. HUB LOAD EQUATIONS

The hub loads including the shears and moments, in both rotating and fixed

coordinate systems, are shown in Figure 6. Cs, C., and C, are radial, lead-lag,

p.and flap shear components; and C,, C,, C, are torsional, in-plane and out-of-plane

moment components in the rotating coordinate system. Cz, Cx, and Cy are the

vertical thrust, forward drag, and side force comp-nents in the fixed coordinate

system. The loads with respect to the rotating system are called rotating loads

and those corresponding to the fixed system are called nonrotating loads. They

are derived in detail below.

3.1 ROTATING LOADS

The expressions for the root shear and moment components in the rotating

coordinate system are formed by spanwise integration of the aerodynamic and in-

ertia loads as follows:

+f02r1

C'=J sdX d (60)

k C,=_t yd2- . (61)

+, p , d doz dt(62)

C, !f P12+ dt + d o, 2 d2 + Pf)w d_- - dofy t(3

C. 0 (64)

S0 (65)

where the aerodynamic forces are obtained in Equation (54), and the dimention-

• . less accelerations are as follows:

, t f-** - 2a sn 2 * cos k - 2f" a:2sin%

- t cos 7 + 2cra:' sin , cos 0 - 2a:'S, cos ,

+ 2ac $pc sin ik - - la + Opct - a:'w cos V

.-.-.
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+ a:', co g + 9 *" cos 0 + I? " sin k (66)e
0,y f + 29' - 2aD" cos - 2a,:t0* sintb - 2,,,b*."

- a:0sin 0 +ai,?bcos0& - - a:2sin PcosO

+ a*2 2 sink~ cog 0' + c,:* 8 pC2 cos - afpcZ sin 0b~~~~~- ,t;',v cosk + a: , , in ik - ac, si C , o,

- X sin/ + 1' *o o (67)

" , = I"-. 2a,*co' o + 2a;tsin k + 8pc "

+ at*2 sin 0 - a**t cosO + z" (68)

3.2 NON-ROTATING LOADS

The shear and moment components in the fixed coordinate system are formed
from the load components in the rotating coordinate system. They can be simply

expressed as

Cx =c. cos, -C, sin,0 (69)

Cy = Co,sin + C, cog , (70)

Cz = C. (71)

CL = -C. sin 0 (72) ,'

CM = C. cos ?k (73) .'

They can be put into matrix form as done in Reference 13. It is:

0.
(CM) Oc , 8c* a

CX [() + [A ()] x + [Rv ,] X' + [Dwv] x
Cy

k Cz -A k I k "
a

,'.'., 1v+ {,() w , lb*+, l", i +, th '+ Vl', " (74),.'"

%)

* *A' -A- xf...

"" "" ' " """ /' "" ' " " .' ,, '.- " *-"" . ~ -. . . . a -,. . . . . -,. . . ... . .. '
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. Again, Equation (74) matches the similar equation in Reference 13 very well, ex-

cept for the additional nonlinear terms.

0.1
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4.FUSELAGE EQUATIONS

In this research, the same model as in Reference 13 is used for fuselage, except

that X and Y axes have opposite positive directions. Figure 7 shows the fuselage

model in the longitudinal and pitch dii .ctions.

This model includes 9 degrees of freedom. These are:

1) vertical rigid-body;

2) rigid-body pitch;

3) rigid-body roll;

4) rigid lateral;

5) rigid longitudinal; .

6) elastic vertical;

7) elastic lateral;

8) elastic pylon in pitch;

9) elastic pylon in roll.

The model also includes vertical offsets between the fuselage center of mass, the

*- pylon focus, the pylon center of mass, and the rotor center.

The fuselage is modeled as a uniform beam with a lumped mass M, added

. at the center. The mass of the pylon is separated from the fuselage, which is

connected to the fuselage through pitch and roll torsional springs. The fuselage

equations of motion are the same as those in Reference 13, except that the X and

Y axes are reversed.

* .

. . . . .. . . . S% ~ • .. . . % . A ~. . .. . .l
. , °,o°-' " ,, •°.: °f °o*.-o %, °.° oo%,° , ° o°°o°° " ool °°

°
"o', %'.°o°2°-" °. 2 o ',°. o° % ° - .°A * "-. A"°o A- ;.

.
°°*°° °'°.'o° .%
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5. SOLUTION METHOD

5.1 GALERKIN METHOD

, The flap-lag equations of motion, Equation (57) and (58), are nonlinear, vari-

able coefficient, integro-partial differential equations. First, these equations can

be reduced to nonlinear ordinary differential equations in terms of the generalized

* coordinates by use of the modal form w -jqj and v 0,,,, and the Galerkin

- method as below:
*

T 

-,

(Mj MitY(jQ) + (j)(2 +( : (2=( (75)"" Mkj Mki l Ckj Cki ,] K) k j Kkj p, Fk

Where M, C, and K are functions of q, p, and their derivatives and where

i,j = 1,... m number of flap degrees of freedom;

and

k,L = 1,... n number of lead-lag degrees of freedom.

5.2 HARMONIC BALANCE

As done in Reference 13, fuselage equations can be transformed into a set of

linear, algebraic equations by a harmonic balance which is formulated in matrix

notation for a linear, multi-degree-of-freedom system in Reference 7. In our case,

.. the equations are nonlinear. Therefore, an important conclusion obtained in Ref-

erence 13 can be used. As mentioned before, it says that the addition of inplane

degrees of freedom does not significantly affect the plunge vibrations for the cases
- "considered, and these cases are for resonable configurations. Figure 8 and 9 shows

the comparison of plunge vibration with or without inplane degrees of freedom.

Therefore, we can first solve the plunge-pitch-roll problem with inplane pa-

rameters eliminated. To do this, the flapping equation is expressed as below:

+- +

kk

*_o, L .i
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ac a*00'2- -.
- • A

[(] + [A(Ok)] s +a:I + [D(O) I1* (76)

iepc

a

"" and the load equation (74) becomes

CM) .Oo "

8I

+[ q+I (:) + [bJ (*
+ [() 1 + + (77)

For the fuselage equations, we have eliminated X, F, and 1), and their derivatives.

Now, these equations are linear ordinary differential equations with peoriodic co-

L efficients. They are easily solved by harmonic balance technique and impedance

matching. The control vector components 0,, 00, 0, A, R, , and dc can be

al- P P P P e
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obtained from a trim procedure.

For the next step, we go to Equation (75) with q ... qj and c,,, a., and 2 and

their derivitives as knowns. The flap-lag Equations (75) can be further expressed
Nas

(Mi ()+ (+ ci () K+( 'Kj (qj)

Mki MkI P) I Ckj Ck) \! K) j )kI P1)

0,

Ozo
ICA.

and ,the loa Eqain (74 ca be furhe exresea
0.

CYC

U "

I.'.

&qC

+: +L (j (j* (9

•2

* "C"

k: Then, using flap-lag Equations (78), load Equations (79) and complete fuselage ..
ndthequations, we can finally solve the inplane problem. a

t0

CM a" --"

- . . . .... '.C
L1-*? o "C .." " 

° 
" " " " " " - " " " " " " + " . ' ' " " " " . . * " " l " " " %

• * - . % '. '% " + '% m, ". - " . . . . . . a 8 . . . ."- m . - ,

:' . .. + .,+ 't .. ++ . .£,.C x .=.. [-+., ,. (... i,. k)],,.,,,: .,,. + [A(,,. i.)] X + [..... rX, +_,. .. .. ... .[D .,_ ., ,, ".. .,'' , , •] .
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6. STATEMENT OF WORK

In helicopter preliminary design stage, it is very important for designers to

determine the helicopter structure dynamic parameters. Besides getting a stable
system, we hope that helicopter vibrations can be reduced as much as possible
in the helicopter flight envelope. Since different combinations of fuselage and ro-

*i..- tor parameters can cause quite different vibration levels, we should study them

carefully. As is well known, most hingeless rotors can be considered as relatively

soft flapwise, except the ABC blade which is stiff fiapwise. So, we will choose

a soft flapwise rotor system as done in Reference 7 and Reference 13. For the
' "inplane direction, soft inplane and stiff inplane both are common. Therefore, this

investigation includes both soft inplane and stiff inplane rotors. In brief, we will

change fuselage dynamic parameters (the fuselage first bending natural frequen-
cies in vertical and lateral directions, and the pylon torsional natural frequencies

in pitch and roll directions) to match two categories of rotor systems, which are

soft flapwise, and both soft inplane and stiff inplane. Also, the fuselage layout

will affect the dynamic response significantly, as obtained in Reference 13, the
configurations without or with offsets are concerned.

" In order to finally solve the Equations (78) and (79) with different dynamic

parameters described above, the detailed procedure are as follows. At first, Equa-

tions (76) and (77) should be solved in order to obtain the generalized coordinates

• ... qj and ac, a, and 2 and their first and second derivatives as knowns. To do
so, three nonrotating out-of-plane bending modes are used, which are the same
as those in Reference 8. Also, the baseline parameters are chosen as the same

as those in Reference 8 for comparison purposes. The baseline parameters are as

*. . follows:

Rotor: 4 blades 8 =.3

p= 1.12  w2 = 2.5 W3 = 4.5

Fuselage P. = .37 fg/ =.14

Wy,, = 1.53 m = 2.58 WIL = 1.1&'Jm

Svv/cvu = 1.45 C] / hrc = 10.0 WJ L/WcL 4.47

gv=gm=gL =.02 =dF = J= 0.0

Trim Condition: JOzJ = .0144 ICLI = CIC -- 0.0

- --. 0715 A .03187

*

• -€. " -- ' " " " .. ,- - . ,- ,'_ 4" J' 
a

. . .- . ,- - . .. - . .* .o . ..- , •. . . . - . , . . • .. • . •
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Next, we add three nonrotating blade inplane bending modes. In order to

study the dynamic response for both soft-inpane and stiff-inplane rotors, two sets

of three nonrotating blade inplane bending modes are used to correspond to dif-

ferent rotors. For the comparison purposes, the first inplane nonrotating bending

frequencies corresponding to soft inplane and stiff inplane rotors are the same as

those in Reference 13, which are w. =.7 and w. = 1.4, respectively. Also, we need
both lateral damping coeffecients of the fuselage and the steady portion of side

forces, which are gy = .02, .002, and ICxI = IOyI = 0.0, the same as those in Reference

S-'. 13.

The last step is to study the effects of offsets. The same parameters, h =.4,

Jp, 0.0, and J4 =.2 as those in Reference 13, are used for both soft inplane and stiff
" inplane cases. Thus, we can obtain all responses for different possible situations.

, At the present point in our research we are transfering our computer codes
Ufrom the VAX system at Washington University to the CDC system at Georgia

Institute of Technology. When this work is completed, we will be able to continue
*~.- the numerical work and should have our first answer shortly. The first runs will

be validation runs to ensure that we can repeat the results of References 8, 12,

and 13. Then we will procede to studies of parameter variations.

-,.

,' :i
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7. NOMENCLATURE

a = slope of lift curve, 1/rad

A = ratio of rotor mass to moment of inertia, MtR/I 1

b = number of blades

C,. = blade profile drag coefficient

6Tz = conventional thrust coefficient, thrust/pra2R4

CX, CY,CZ,Cm,CL = vibratory portion of nondimensional longitudinal

force, lateral force, thrust, pitch and roll

moment over a

CX,CY, CZ,CM,CL = steady portion of coefficients

(I F4 =offset between focus and center of pylon,

divided by R

p = offset between focus and center of pylon,

divided by R

offset between hub and center of pylon,

divided by R

. = mass centroid offset from elastic axis of a blade

EI = beam cross-section bending stiffness

{} = vector of forces

= nondimensional acceleration of gravity, g/ 2 R

gzgy,gm,gi = plunge, lateral, pitch and roll structural

damping, ; 2f/W,#

_-- / = offset between hub and focus, divided by R

[H] = fuselage receptance

( I] = identity matrix

'Ut,= pitch inertia moment of pylon, divided by A[pR2

= roll inertia moment of pylon, divided by NfpR'

.4I , = pitch inertia moment of fuselage, divided by AI J?2

L. I,, = roll inertia moment of fuselage, divided by .MOOR?

= length of thp beam, m
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Im = mass per unit beam length, kg/m

me M= lumped mass on the center of fuselage, kg

MP = mass of pylon, kg

M = mass of fuselage, M, + ml, kg/m

,M = mass of whole fuselage, M, + ml + Mp, kg

q; = generalized coordinates

rpm, I = radius of gyration of pylon in pitch, roll,

S.divided by R

,fm,FL = radius of gyration of fuselage in pitch, roll,

divided by

R = rotor radius, m

= beam mass divided by whole airframe mass,

ml/ (ml+Me +M, )

a [Td] = transformation matrix, Equation (4)

[TR = transformation matrix, Equation (2)

U = blade airfoil velocity with respect to the air mass,

. m/sec

also strain energy, N-m

Up, UT = velocity components of blade airfoil section,

perpendicular and parallel to the chord

.-' . respectively, m/sec

.. .,t,w - elastic deformation in z,y,z directions

-' respectively, m

"" V = velocity vector of a arbitrary point on deformed

blade, m/sec

6W = virtual work, N-m

a = distance along fuselage, nose to tail, or

distance along radius of rotor, root to
do

tip, divided by R

%i°
°o
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X, ,z = rotating coordinates fixed on the blade

d,!,',z' = deformed coordinates fixed on the blade

X, Y, Z = fixed fuselage coordinates

FIF IZ = dimensionless fuselage elastic degree of freedom

in vertical and lateral directions

= pitch angle of hub, fuselage, positive nose up,

rad

s a,, = roll angle of hub, fuselage, positive advancing

& 'side up, rad

- equilibrium flapping angle, rad

i!4 ft. + ft 9sin + cos 0

= coning angle, rad

Cp = lateral cyclic flap angle, rad

PC = longitudinal cyclic flap angle, rad

9Pp = pre-cone angle

= Lock number

6 = first variation

= scaling parameter, (=.1)

W,7 = blade cross-section principal axes coordinates 41

(01 = vector of control variables

G = equilibrium pitch angle,

P. + o. sin 0 + Oc cos i + a -PC) +O ,

0,0,0 8 = collective and cyclic pitch, rad

... A = inflow ratio

p = advance ratio

p = ratio of mass of pylon to mass of fuselage,

M,/(mL + MC)

PC = ratio of lumped mass to the uniformly

distributed mass, M./ml

= air density, kg/rn
./
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.J.

q

- rotor solidity

Ua -- stress tensor components, N/m2

- dimensionless tenssion

- =-- blade azimuth angle, nondimensional time

= natural frequency of fuselage, divided by 0

Q.,= frequency of "y" motion with "x" boundary

condition, divided by 0; y = z,y,m,L plunge,

:." lateral, pitch, roll, x = c, f cantilevered,free

(1 = rotor speed, rad/sec

W( = d( )/do

() = d( )/dt
'~~ :'-(+ =d( )d

S=1d()/dx

Le.

I.,.

-i
;, '4.
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